Liver-targeted cyclosporine A-encapsulated poly (lactic-co-glycolic) acid nanoparticles inhibit hepatitis C virus replication

نویسندگان

  • KR Jyothi
  • Jagadish Beloor
  • Ara Jo
  • Minh Nam Nguyen
  • Tae Gyu Choi
  • Jin-Hwan Kim
  • Salima Akter
  • Sang-Kyung Lee
  • Chi Hoon Maeng
  • Hyung Hwan Baik
  • Insug Kang
  • Joohun Ha
  • Sung Soo Kim
چکیده

Therapeutic options for hepatitis C virus (HCV) infection have been limited by drug resistance and adverse side effects. Targeting the host factor cyclophilin A (CypA), which is essential for HCV replication, offers a promising strategy for antiviral therapy. However, due to its immunosuppressive activity and severe side effects, clinical application of cyclosporine A (CsA) has been limited as an antiviral agent. To overcome these drawbacks, we have successfully developed a liver-specific, sustained drug delivery system by conjugating the liver-targeting peptide (LTP) to PEGylated CsA-encapsulated poly (lactic-co-glycolic) acid (PLGA) nanoparticles. Furthermore, our delivery system exhibited high specificity to liver, thus contributing to the reduced immunosuppressive effect and toxicity profile of CsA. Finally, targeted nanoparticles were able to effectively inhibit viral replication in vitro and in an HCV mouse model. As a proof of principle, we herein show that our delivery system is able to negate the adverse effects of CsA and produce therapeutic effects in an HCV mouse model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted novel surface-modified nanoparticles for interferon delivery for the treatment of hepatitis B.

The purpose of the present work was to develop hepatitis B surface antigen (HBsAg) surface-adsorbed cationic poly (d,l-lactic-co-glycolic acid) PLGA nanoparticles for interferon alpha (IFNα) delivery targeted to hepatocytes. Cationic PLGA nanoparticles loaded with IFNα were prepared using the double emulsification technique. Delipidated HBsAg was passively adsorbed on the surface of nanoparticl...

متن کامل

Curcumin-loaded poly lactic-co-glycolic acid nanoparticles effects on mono-iodoacetate -induced osteoarthritis in rats

Curcumin has been found to be very efficacious against many different types of diseases. However, the major disadvantage associated with the use of curcumin is its low systemic bioavailability. In the present study the protective effects of curcumin-loaded poly lactic-co-glycolic acid nanoparticles (nanocurcumin) against mono-iodoacetate-induced osteoarthritis in rats was inves...

متن کامل

Polymer-basednanoadjuvants for hepatitis C vaccine: The perspectives of immunologists

The hepatitis C virus (HCV) is an infection that affects the liver tissues in humans, leading to the development of effective prophylactic and therapeutic HCV vaccines to prevent a global epidemic. Scientists consider it challenging to produce a therapeutic vaccine for the treatment of hepatocellular carcinoma as opposed to a preventative vaccine. However, several drawbacks are involved with a ...

متن کامل

Co-delivery of polyinosinic:polycytidylic acid and flagellin by poly(lactic-co-glycolic acid) MPs synergistically enhances immune response elicited by intranasally delivered hepatitis B surface antigen

The aim of the present work was to investigate the synergistic effect between toll-like receptor (TLR) 3 ligand polyinosinic:polycytidylic acid (pI:C) and TLR5 ligand flagellin (FLN) on immune responses induced by nasally delivered hepatitis B virus surface antigen (HBsAg). Mannan and chitosan oligosaccharide-modified, pH-responsive poly(lactic-co-glycolic acid) (MC-PLGA) microparticles (MPs) c...

متن کامل

Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

PURPOSE Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015